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Abstract

Lower and upper bounds for the four standard incomplete symmetric elliptic integrals are
obtained. The bounding functions are expressed in terms of the elementary transcendental
functions. Sharp bounds for the ratio of the complete elliptic integrals of the second kind and
the first kind are also derived. These results can be used to obtain bounds for the product of
these integrals. It is shown that an iterative numerical algorithm for computing the ratios and
products of complete integrals has the second order of convergence.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

In some problems that arise in science and engineering one has to deal often with
the elliptic integrals. A classical result, which is due to Abel, states that they cannot
be represented by the elementary transcendental functions. All integrals discussed in
this paper are the standard elliptic integrals. They are homogeneous functions of two
or three or four variables and they simplify to Legendre’s elliptic integrals for special
values of their variables. Bounds for the latter class of elliptic integrals can be found
in [1-3,13].

The goal of this paper is to derive bounds for four incomplete elliptic integrals
with the bounding functions being some elementary transcendental functions. These
results are presented in Section 3. Bounds for the ratio of the complete integrals of
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the first and second kinds are obtained in Section 4. These results can be used to
obtain bounds for the product of these integrals.

In what follows, we will assume that x, y, z are nonnegative numbers and that at
most one of them is 0. The symmetric integral of the first kind is defined as

RF(x,y,Z):%/Om [(1+x)(t+ ) (1 +2)] " dr (1.1)

(see, e.g., [7,8,10]). Clearly Ry is symmetric and homogeneous of degree —% inx,y,z
and satisfies Rp(x,x,x) = x~ /2.

Let p>0. Elliptic integral of the third kind,
3 (% _ _
Ri(yzp) =3 [ (000042 ) (12)

is symmetric in x,y,z, homogeneous of degree —% in x,y,z,p and satisfies
Ry(x,x,x,x) = x /2 (see [8,10]). A degenerate case of Ry is the elliptic integral of
the second kind

RD(XJ/J) :RJ(X7J’7 sz)

3 (% _ _
:E/ [(t+x)(t+ )] e+ 2 dr (1.3)

0
which is symmetric in x and y only. A completely symmetric integral of the second
kind

RG (xvyv Z)

- %/0@ [<Z+X>(t+y)(t+z)]”z(tfx+tiy+tjz>zdz (1.4)

is symmetric and homogeneous of degree % in its variables, satisfies Rg(x,x,x) =

x'/2 and is well defined if any or all of x,y,z are 0 (see [7,8,10]). All four integrals
defined above are the incomplete integrals. Two complete integrals, of the first kind
and the second kind, are defined as follows:

Re(x.3) =2 Ry, 0) =+ [ (0420040 R (1)
and

Re(x.3) =" Ro(x,1,0)
R SN
_n/o [(t+x)(t+ )] (t+x+t+y>tdt (1.6)

(see [7,8,10]).
An important elementary transcendental function used in this paper, denoted by
R, is the degenerate case of Rp,

Re(ey) = Relxpn) =5 [ (42700 (17)
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(x=0, y>0). It is known that

RC(x7y) = {

(v —x)"arccos(x/y)' 2, x<y,

(x — y)fl/2 arccosh(x/y)'"/?, x>y
(see [7, (6.9-15);10]). Let us note that Rc(0,y) = 7/ (2y'/?).

2. The R-hypergeometric functions

All elliptic integrals defined in Section 1 can be represented by the R-
hypergeometric functions. For the reader’s convenience we give below a definition
of this important class of special functions. In what follows, we will employ notation
and definitions introduced in Carlson’s monograph [7]. The symbols R, and R. will
stand for the nonnegative semi-axis and the set of positive numbers, respectively. For
b= (by,....b,)eR and X = (x1,...,x,)eRL the R-hypergeometric function of
order ae R with the parameters b and variables X is defined as

Ru(bi) = [ (2 (o), (2.1)
n—1
where
E, i ={(u,...;up—1): 4,20, 1<i<n—1, uy + - +u,—1 <1}
is the Euclidean simplex, u = (uy, ..., uy—1,u,) where u, =1 —u; — -+ —uy_y, u-

X =ux; + -+ 4+ uyx, is the dot product of u and X,

1 £ -
d,ub(u) = M H uf‘ ! du
i=1

is the Dirichlet measure on E,_;, B stands for the multivariate beta function and
du = du,...du,_,. Function R_, is also called the Dirichlet average of the power
function 7.

Some elementary properties of R_, are listed below:

(1) A vanishing b-parameter can be omitted along with the corresponding variable.
(i) Permutation symmetry (symmetry in indices 1,...,n which label the b-
parameters and the variables).
(iii) Equal variables can be replaced by a single variable if the corresponding
parameters are replaced by their sum. In particular, if all variables are equal,
then R_,(x,...,x) = x7°.

If a>0, then the R-hypergeometric function R_, admits another integral
representation [7, (6.8-6)]

1 © &
R (b;X) = 0 o ) 2.2
0 =gy ) T 22)

where d = by + - + b, —a>0.
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All six elliptic integrals defined in the previous section can be represented by the R-
hypergeometric functions. We have

Rp(x,y,2) =R_ip(4, 35 x,9,2),
Ry(x,p,2,p) =R 303,14, 1;x, 9,2, p),
Rp(x,,2) =R_3(%,3,3: X, 7, 2),
RG(x,y,2) =R o (5,5, % x, 7, 2),
(

RK X,y) :Rfl/Z(%%; x>y)7

RE(x7y) :RI/Q(%,%;X,)/) (23)
(see [7,8]). First formula in (2.3) together with (1.7) give the known result
Rc(x7y)=R_1/2(%,l;x,y). (24)

We close this section with three lemmas which will be used in Section 3.

Lemma 2.1. Let x>0, y>0, z>0 and let

) 3 [ _ _
fer) =3 [ e (23)
Then
j<xaya Z) - R—3/2(%; 1; 1§X,J’a2) = RJ(x»y»y»Z) (26)
and
(Relxy) =Re(xd)
z=)
i — 1/2 _
Jo6y,2) = 5% yRc(x,Y)’ Ny =z, (2.7)
2(x—y)y
x /2 XxX=y==c.

Proof. For the proof of (2.6) we use formulas (2.2) and (2.1) with a =3/2, b=
(1/2,1,1) and X = (x,y,z) and property (iii). We shall establish now (2.7). If y#z
the first equation follows from (2.5) by partial-fraction decomposition and (1.7).
Assume now that x#y = z. It follows from (2.6) that j(x,y,y) = R,3/2(%,2;x,y).
Next to the last line of Table 8.5-1 in [7] gives the second part of (2.7). The third part
of (2.7) is an obvious consequence of (2.6) and property (iii). [

For later use we define two functions d(x, y) and ¢(x,y), where
d(x,y) =j(x,x,y) (2.8)
(x>0, y>0) and
9(x,y) = Rip(3, 1;x,5) = Rg(x,,) (29)



E. Neuman | Journal of Approximation Theory 122 (2003) 249-259 253

(x=0, y>0). It follows from (2.7) that

R _ 12
3 C(xay) X : X?fy,
d(x,y) = x—y (2.10)

X732, X =Y.

Function ¢ can also be represented by the R-hypergeometric function R¢. First entry
of Table 8.5-1 in [7] gives

X2+ yRe(x,y)
g(x,y) = 2 ’

x!/2, xX=y.

X7, 2.11)

Inequalities for the R-hypergeometric functions are contained in the next two
lemmas.

Lemma 2.2. Let b= (by,by,b3)eR:, X = (x,y, z)e[R§3> and assume  that
min(X) <max(X). Also, let 2 =b,/(b1 + b2), u = b/ (b1 + by). If 0<t <1, then
AR(b1 + b2, b3; X, 2) + pR(b1 + b2, b3y, 2) < Ri(b; X)

< Ri(b1 + by, b3; Ax + uy, 2). (2.12)
Inequalities in (2.12) are reversed if either t>1 or t<0 and they become equalities if
t=0ort=1orx=y.
Proof. This follows immediately from Theorem 3 in [11, (4.18)]. O
Lemma 2.3. Let beR",
following inequalities

R_o(b; X)Ro(b: X)>1 and R_o(b; X) + Ry(b; X)>2 (2.13)

XeR? and assume that min(X)<max(X). Then the

hold true for any a+0.

Proof. It is known that the R-hypergeometric function R, is strictly log-convex in ¢
(see [4, Theorem 4]; [7, Appendix B]). Thus

i pl—i
Rqu >R).p+(17).)q
(pg#0, 0<A<1). Letting above —p = g = a and A = 1/2, we obtain
R ,R,>R}=1.

The second inequality in (2.13) follows from the first one and the arithmetic mean—
geometric mean inequality. [

It follows from (2.13) and (2.3) that
RrRg>1 and Rp+ Rg>2 (214)
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Inequalities (2.15) also follow from Theorem 1.1 in [2].

3. Bounds for the incomplete elliptic integrals

Lower and upper bounds for the four elliptic integrals Rr, R;, Rp, and R are
derived in this section.

In what follows, the letters o and f will stand for the roots of the Chebyshev
polynomial T»(¢) =82 —8t+1 on [0,1], ie, a=(1-1/v2)/2 and f=
(14 1/+/2)/2. The following inequalities will be used in the proof of the main
result of this section.

Lemma 3.1. Let x>0, y>0, A= (x+)/2 and let u=oax+ fy and v = oy + fx.
Then the following inequalities

%( L )<[(z+x)(z+y)]‘/2

t+u t+v
[ 1 1 1 1
<= _ 3.1
2[I+A+2<t+x+t+y)} 3D

are satisfied for all te R, .

Proof. By the inequality of arithmetic and geometric means of a*> and ¢g> we have

2, 2
29 1T
a* + g2 2ag

Dividing all three terms by g, and letting ¢ and g be the arithmetic and geometric
means, respectively, of # + x and ¢+ y we obtain

2(t+ A4)
(t+ AP+ (t+x)(t+y)

—1/2

<[+ x) (1 + )]

(t+ AP+ (1+x)(t+y)
20+ A)(t+x)(t+y)

(3.2)

Partial-fraction decomposition of the rational functions in (3.2) gives the desired
result. [

Let us note that the first and third members of (3.1) provide shape preserving
approximations to the function [(¢ + x)(z + y)]fl/ ? i.e., they share monotonicity and
convexity properties of the function to be approximated.

We are now in a position to state and prove the main result of this section.
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Theorem 3.2. Let x, y, z and p be nonnegative numbers and let the symbols u, v, and
A have the same meaning as in Lemma 3.1. Then
3[Re(z,u) + Re(z,0)]
< RF (X, "z Z)
<%[RC(ZvA)‘F%(RC(ZNC)‘FRC(Zvy))] (x>0, y>0)v (33)

37z p,u) +j(z,p,0)]
< Ry(x,,2,p)
<3li(z,p, A) +3(j(z,p, %) +j(z,p,9))]  (x>0,y>0,p>0) (3.4)
and
319(z, %) +9(z, )] < R6(x,3,2)<g(z,4)  (x>0,y>0). (3.5)

Inequalities (3.3)—(3.5) become equalities if either x =yorx=y=zorx=y=z=p
where the latter condition applies to (3.4) only.

Proof. For the proof of (3.3) we multiply all terms in (3.1) by (1/2)(¢ + z)fl/zand
next integrate, from 0 to infinity, all members of the resulting inequality. Application
of (1.1) and (1.7) completes the proof. Inequalities (3.4) are derived from (3.1) in an

analogous manner. First, we multiply all members by (3/2)(¢ +z)""/*(¢+ p)~" and
next use formulas (1.2) and (2.5). Inequalities (3.5) follow from (2.12) by letting
t = by = by = b3 = 1/2. The fourth formula in (2.3) is used together with (2.9) and
the permutation symmetry (ii), to obtain the desired result. The last statement of the
theorem follows from the fact that the first and third members in (3.3)—(3.5) are
equal in the stated cases. [

Corollary 3.3. Let x>0, y>0, and z>0. Then
3d(z +u) + d(z,0)]< Rp(x,y,2)
<3ld(z,4) +3(d(z,x) + d(z,))]. (3.6)

Equalities hold in (3.6) only if x=y or x=y=12z.
Proof. This result follows immediately from (1.3), (3.4), and (2.8). O

New bounds for the function R¢ have been established in [12, Theorem 3.3]:
3/(Pn+ 2q0) <Rc(x, ) < (pug) ™" (3.7)

(x>0, y>0, n=0,1,...), where the sequences { p,}, and {¢,},” are defined as

Po =%, qo=1/F: Pust = (pu+4)/2 and guy1 = (Pai19s)"* (n0). Inequalities
(3.7) together with the results of Theorem 3.2 provide weaker bounds for the
integrals in question. We omit further details.
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The following result
Re(z, A)<Rp(x,y,2) <Rz, /Xp) (3.8)

is known (see [10]). We shall show that the lower bound in (3.8) is weaker than the
corresponding bound in (3.3). To this aim we use the fact that the function R (-, y) is
a convex function in y. This in turn implies that

HRc(z,u) + Re(z,v)] = Re (Z,MT—HJ) = R¢(z,A).

More bounds for the incomplete symmetric elliptic integrals can be found in
[5,6,9,10].

4. Bounds for the ratio Rg/Rg

The goal of this section is to derive simple bounds for the ratio Rg(x,y)/Rg(x,y)
(x>0, y>0). For later use, we recall the definition of the celebrated Gauss
arithmetic—geometric mean AGM = AGM (x,y) of x and y. Forn =0, 1, ... let

a, +b
apg=x, bo=y, a1= - 3 ’17 but1 = V anby. (4-1)

It is well known that

@) by<bp1 < <AGM < ---<ap1<a, (n=1),
(b) 1irnn—rooan = limn—>oo bn = AGM)
(C) RK(x7y)AGM(\/)_C7 \/.]_/) = 17
(see, e.g., [7, Ex. 6.10-8]).
We need the following.

Lemma 4.1. The following inequalities

\/_<RKE ’yi (\/’_‘;ﬁ)z (4.2)

hold true.

Proof. We multiply (¢) by Rg and use (2.15) and (a) to prove that

Re(x,y) > AGM(v/%, \/7) > (x)' . (4.3)

Application of (c) to (4.3) gives the first inequality in (4.2). For the proof of the
second inequality in (4.2) we use the following result [7, Problem 9.5-4]

Rg(x%,57) n( 2 (XYY
Re2 )~ 22 a - b)<a = (S

where the sequences {a,};° and {b,};" are defined in (4.1). Replacing x by x!/> and y
by y!/2 we obtain the desired result. [
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Before we state and prove the main result of this section let us introduce more

notation. Two sequences {x,},” and {y,}, are defined recursively as follows:
2
Xn + /Y
Xo = X, Yo=), Xnl = (w> ) Y1 = vV XnYVn, (44)
n=0,1,... . Since these sequences are related to (4.1) by x, = > and y, = b2, it

follows that
lim x, = lim y, = AGM(\/x,/y)".
n— o0

n— oo

Also, we will need another pair of sequences, denoted by {u,},” and {v,},”, where

Uy =2"Xp11 — Op, Un=2"Ypi1 — Op (4.5)
and
n = 2y, (4.6)
k=1
n=0,1,....

The main result of this section, generalizing (4.2) (the case n = 0) and Corollary
4.3 (the case n = 1), reads as follows

Theorem 4.2. Let n=0,1, ... . Then
RE (X,y)
S <y, 4.7
" RK(X,y) tn ( )
where the lower and upper bounds in (4.7) are monotonic in the following sense:
Up | SUp S Uy SUp— ) (48)
(n=1,2,...).

Proof. We use the Landen transformation

2
Rep) = 2Re | (V2 \/x—y] — VR(x.)

(see [7, Problem 9.5-2]) together with the quadratic transformation for Ry
VE+
(T\/— W

(see [7, (6.10-5)]) and (4.4) to obtain
Re(x,y) _  Re(xi, )
=2 — 1. 4.9
Ri(x,y) R (x1,)1) 4 (49)
Repeated application of (4.9) implies the following result:

RE(X,J’) 2n RE(xmyn)

Rk(x,y) = Rk

RK(xay) B RK(xnayn) "
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(n=20,1,...). Application of (4.2) to the first term on the right-hand side of the last
formula gives, in conjunction with (4.4), the desired result (4.7). For the proof (4.8)
we rewrite formulas (4.5) as

Xpn + yn)

5 (4.10)

Uy = Uy +2" (xn+1 -
and
Up = Up—1 + 2”(J/n+l _yn) (41 1)

n=1,2,...; up=((v/x+ \ﬁ)/2)2, vy = /xy). The first inequality in (4.8) follows
from (4.11) because y, <y, and the third inequality in (4.8) is a consequence of

(m + m)2 X+ Vn
Xptl = < .

2 )
The proof is complete. [

Corollary 4.3. Let A= (x+y)/2 and G = \/xy. Then
A+ G Rg(x, y) A+ G 1
256G~ G\R s <TG+ 44— G).

Proof. This follows from (4.7) and (4.10)—(4.11) by lettingn=1. O

Let us note that the sequence {u, — v, },~ converges quadratically to 0 as n— oo.
This is a consequence of the following formula:

Uy, — Uy 1

(un,1 — l)n,l)z B 22X,

(4.12)

(n=0,1, ...). For the proof of (4.12) we use (4.4)—(4.6) to obtain

(\/)—C; \/—> on [2n_1 (xn - yn)]2
2" (/% + /7))

Up — Uy :2n(xn+l _yn+1) >

_ (un—l - vn—1)2 _ (un—l - Un—l)z
20(\ /% + /)’ 22X, 11

Hence (4.12) follows.
We close this section with the remark that the product and the quotient of R and
Ry satisfy the following relation:

Rg(x,y)
AGM (\/%,\/7)* R (x, y)

which follows easily from (c).

RE(xay)RK(xay) -
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